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Canonical versus Grand Canonical Occupation 
Numbers for Simple Systems 

P. T. Landsberg 1'2 and P. Harshman 1 

Ihr naht euch wieder, 
schwankende Gestalten, 

Die friJh sich einst dem 
triiben Blick gezeigt. 

Versuch ich wohl, euch 
diesmal festzuhalten? 

Fiihl ich mein Herz noch 
jenem Wahn geneigt? 

Ihr dr/ingt euch zu! Nun gut, 
so m~gt ihr walten, 

Wie ihr aus Dunst und Nebel, 
um reich steight. 

Received March 29, 1988 

An ideal gas of N indistinguishable particles is described by a canonical ensem- 
ble (c.e.) and also by a grand canonical ensemble (g.c.e.) which has N as the 
mean total number of particles, the temperature and volume being the same in 
both cases. Exact mean occupation numbers nj(N) are found if the system has 
only two states 1 and 2 of energies E 2 >/El.  This should apply to quantum wells 
and similar simple systems. For systems which have captured one particle, the 
theory gives the simplest answers, and one find a maximum discrepancy of 
!7% between the two ensembles for the fermion case. It occurs when 
E2 -- E1 ~ 53 meV at room temperature. For N = 1 the mean occupation number 
for the c.e. is identical for fermions and for bosons, being in both cases given by 
n2( 1)= { exp [ (E 2 - E  1 )/k T] + 1 }- t ,  n l( 1)= 1 - n  z(1 ). For large N one reverts to 
the usual situation and the discrepancy between the ensembles becomes small. 

KEY WORDS:  Ideal quantum gas; fermions; bosons; canonical ensemble; 
grand canonical ensemble; occupation numbers. 

1Department of Electrical Engineering, University of Florida, Gainesville, Florida 32611. 
2 Permanent address: Faculty of Mathematical Studies, University, Southampton, England. 

475 

0022-4715/88/1000-0475506.00/0 �9 1988 Plenum Publishing Corporation 



476 Landsberg and Harshman 

1. I N T R O D U C T I O N  

Suppose a quantum well has two localized states and it has captured N 
electrons. With microelectronic devices becoming ever smaller, small values 
of N come within the range of possibilities and we shall concentrate here 
on the case N =  1. What are the equilibrium mean occupation numbers 
nj(N) of the two states 1 and 2 (E2 > E l ) ?  One answer is 

n j=  [exp(q~-  7)_+ 1] 1, j = l ,  2 (1.1) 

where 7 = #/kT, rlj = Ej/kT, T is the temperature of the system, and/~ is the 
chemical potential. But we had specified the number of particles N in the 
system, not the chemical potential. Hence (1.1), being based on the grand 
canonical ensemble (g.c.e.), is inappropriate, even though everybody thinks 
of it as the Fermi (or Bose) distribution function. A second approach is to 
state the canonical ensemble (c.e.) result for T and N 

r Z , + l n j ( N + l )  ] 1 
nj(N) = 1_ Z N  nj(N) e"J_+ 1 (1.2) 

where Z N iS the partition function of the system for N particles with point 
interactions. The volume v is also given for (1.1) and (1.2). But (1.2) is 
merely a recurrence relation which still has to be solved for nj(N). It goes 
over into (1.1) only if an approximation is made; for example, one may 
assume nj(N + 1)/nj(N)~ 1. 

In fact, fairly involved relations have been obtained in the past in a 
determined quest to find out precisely, and without approximation, what 
the c.e. really tells us about even as simple a system as an ideal gas. But one 
has to make do with (1.2) or with inequalities. The latter are rather delicate 
in this case, but at least they are exact. (1 5) Twenty-five years or more have 
elapsed, but the old problems still fascinate. This time, in this paper, we 
find answers which are exact and have the beauty of simplicity. But they 
apply only to special cases, and they can be appreciated best only by those 
workers who have tried their hand at the general theory [-which came up 
again recently in connection with the low-temperature behavior of the 
quantities (1.1) and (1.2)(6'7)]. 

In earlier discussions it does not appear to have been noticed that 
quite precise comparisons between (1.1) and (1.2) are possible in the 
special case of a two-state system for which the mean number of 
indistinguishable particles in the g.c.e, is arranged to be precisely equal to 
the fixed number N of (indistinguishable) particles in the c.e. As one 
increases the number of states, the results become more cumbersome and 
we here restrict attention to two states. That is where the pretty results axle 
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found. Apart from possible applications to quantum wells, these problems 
have intrinsic interest in showing the relationship between the ensembles in 
a simple way. 

We shall introduce a "pseudo chemical potential" & = kTyi for the c.e. 
by writing (1.2) as 

nj(N) = [exp(n j -yy )+  1]--1 

where 

exp(-7j)  - Zu+ lnj(N+ 1)/ZNnj(N) (1.3) 

We need to consider four cases distinguished by appropriate superscripts 
gF, gB, cF, and cB, where g and c denote g.c.e, and c.e. and F and B denote 
Fermi and Bose statistics. 

2. T H E O R Y  OF THE T W O - S T A T E  S Y S T E M  

Let E2 > E1 be the energies of the two quantum states, and put 

a ~ e - t l l ,  b ~ e t /2-  t/l~ x ~ x - 7  

Then the g.c.e, has a value of ~ given by 

so that 

1 1 
nl(N ) + r/2(N ) = - -  + - -  - N x/a+_l bx/a+_l 

bN +_(b+I)(N~-I)X+NT-2=O 
a 

(2.1) 

where top signs apply to fermions and bottom signs to bosons. 
In the case of fermions this equation for x has no acceptable solution 

except x = 0  if N = 2 .  This means that n l (2 )=n2(2)=  1, as one would 
expect. If N = 1, one solves (2.1) for x and finds 

b 1/2 1 n]gF)(1 ) _ bl/2 
n~gV)(1)-bl/2+ 1' n(2gV)(1)-bl/2+ 1' n(zgF)(1) >/1 (2.2) 

I ( b +  1)(N+ I ~ 
n(zgm(N) = 1 ) X -  1 

2N 

(2.3) 

In the case of bosons, (2.1) yields 

[ ]' n~gm(N)= ( b + I ) ( N + I ) x _ I  
2bN 

822/53/1-2-31 
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where  

4 b N ( N + 2 )  ~1/2 
X-l++_ 1 - ( b + l ) 2 ( N + 1 ) 2  j 

Landsberg and Harshman 

nl (N ) -~ N, nz(N)  ~ 0 as T h e  t o p  s ign has  to  be c h o s e n  in o r d e r  t ha t  

b + oo. I f  N = 1, (2.3) yields the  r e l a t ions  g iven  in T a b l e  I. 

C o n s i d e r  nex t  f e rmions  for  the  c.e. In  this case  one  has  

Z o = l ,  Z l = e  qlq_ e ~/2, Z2=e-r/t-~/2 (2.4) 

and  one  can  use 

o r  

(2.5) ni(2 ) = [1 - n i ( 1 ) ]  Zle-" ' /Z2  

ni(1 ) = [1 - n i ( 0 ) ]  Zoe-" ' /Z1 (2.6) 

I t  is eas i ly  seen tha t  (2.4), (2.5), a n d  h i ( 2 ) =  1 give the  s a m e  resul t  as (2.4), 

(2.6), a n d  n ~ ( 0 ) =  0, n a m e l y  

b 1 n]c'F)(1 ) = b  (2.7) n]CV)(1)-b+ 1' n(cF)(l) = b -I- 1' n(2Cv)(1) 

C o m p a r i s o n  of  (2.2) a n d  (2.7) shows  tha t  

n]CV)(1) [n]gV)(1)] 2 
n(2~ - L ~ J  (~> 1) (2.8) 

Table I. Details for Equilibrium Systems Containing One Particle ~ 

Ensemble Fermions Bosons 

g.c.e, n~gV)(1) = (b-'/2 + 1) -1 n~gm(1) =b/J1 + (b2-b  + 1) 1/2] 

n~gV)(1)=(bl/2+l) i n~gB)(1)=l/[b+(b2_b+l)l/2] 

YI = Y2 = (q2 "~ ql )/2 7, = 72 = r/1 -- In[ 1 + b -~ + (1 - b - '  + b - -2) l /2]  

c.e. n~cV)(1) = n~Cm(1) = (b- '  + 1)- '  

n(2Cv)( 1 ) = n~CB)( 1 ) = (b + 1 ) --1 

71 =Y]2,  7 2 = / / 1  

~b=exp(q2-r/,)~> 1. For the c.e. the total number of particles is unity. For the g.c.e, the 
average total number of particles is unity. A chemical potential # and its reduced version 
7 = #/kT exist for the g.c.e.: 71 = 72. For the c.e. only "pseudo chemical potentials" (1.3) exist 
and 7, :# ?2. 
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Since this ratio is greater than (or equal to) unity, 

t/~cF)( 1 ) >~ n~gV)( 1 ) ~n~CV)((1) ~> n~gV)(1 ) 

n(2Cv)(1).~.n(2gF)(1), i.e., [n(2Ov)(1)<~ngV(1) (2.9) 

Thus, the effect of an energy gap on the population of the levels con- 
stituting it is, in the case of fermions, greater for c.e. than it is for the g.c.e. 

For  the case of bosons in the c.e. use the general result (5) 

N 

ZNn(N, j) = ~, rS(N; r, j) 
r = l  

where S(N; r, j) is the sum of all those terms in Z N which assign r particles 
to state j. Now 

and 

Hence, 

N 

ZN = ~ exp{ -- [r~/, + ( N -  r)~/2] } = (1 - b N+ 1)/(1 - b) exp(N~h) 
r = l  

S(N, r, j )  = e r"Je ( N - - r ) r / k  = ~ e-N~2br' j =  1 
[e Nq'b r, j =  2 

r/~Cm(N) - ( N +  1)b N+~ b 
bN+l- -1  b- -1  (2.t0a) 

1 N + I  
tl~m(X)_b_~C ~ 1 b N + I - 1  (2.10b) 

For N =  1, the relations (2.10) yield the results given in Table I. 
It is easy to see that in contrast with (2.9), 

(2.!~) 
rt(gB)(1 ) ~ n(2cB)(1) 

The effect of an energy gap on the populations of the levels constituting it 
is in the case of bosons smaller for the c.e. then it is for g.c.e. 

Figure 1 gives the dependence of the occupation numbers of Table I 
on ln b = ( E 2 - E 1 ) / k T .  They all start at n1(1)= 1/2 when the levels are 
coincident and they all approach n1(1)= 1 as E z - E  1 ~ ~ .  This occurs 
most rapidly for the gB case and least rapidly for the gF case. The usual 
exponential decay of the occupation number as the energy level rises can be 
inferred from Fig. 1 by noticing that n2(1)= 1 -n1 (1 )  is represented by the 
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Fig. 1. Mean occupation numbers of the lowest level for a two-state system with one par- 
ticle. (a) Bosons in the g.c.e. (b) Bosons and fermions in the c.e. (c) Fermions in the g.e.c. 

difference between the horizontal  line nl = 1 and the appropr ia te  curve. It is 
this difference which goes to zero exponentially as E 2 -  E1 --, oe. 

The c.e. does not  distinguish between bosons and fermions (curve b) 
because the occupat ion  of the levels cannot  bring the Pauli exclusion 
principle into play. However,  for the g.c.e., N =  1 is only an average; hence 
the difference in the statistics is expected to show up (curves a and c). For  
bosons, n~ is highest because of their statistical attraction, leaving a small 
value for n2. Fo r  fermions, the statistical repulsion lowers nl to curve c. 
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Fig. 2. Ensemble discrepancies for the lowest level for the system of Fig. l. (a) Fermions. 
(b) Bosons. 
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The discrepancies D v - n~cF)(1 ) - -  n~gF)(1) and D B --- f/]gB)(1 ) - -  /7]cB)(1 ) 
between the ensembles are shown in Fig. 2 and have maxima at 

( E  2 - -  E 1 ) / k T =  2.12 (fermions) 

= 1.05 (bosons) 

This corresponds to a maximum discrepancy of 

/ , / ~ c F ) ( 1  ) - -  n]gV)(1 ) n]gm(1) - n~~ ) 
= 1 7 % ,  = 9 %  

n~cF)(1) f/~gB)(1) 

For large N the discrepancies between corresponding ensembles 
expected to disappear. For example, one finds that both 

n~Cm(N) and n~gB)(N)--, N -  1 / ( b -  1) 

are 

One can also estimate the entropy 

2 
S = - k  ~ p i l n p i  

i = l  

of the four distributions, where k is Boltzmann's constant, and 

Pi - p i ( N )  =- n i ( N ) / N  

is the probability for given N of finding a particle in state i. As E 2 - E 1 is 
increased, they drop from the maximum entropy k in  2 at E2 = E l  (Fig. 3). 

Fig. 3. 
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Entropy for the system of Fig. 1 in units of Boltzmann's constant. (a) Fermions in the 
g.c.e. (b) Fermions and bosons in the c.e. (c) Bosons in the g.c.e. 
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3. C O N C L U S I O N  

The mean occupation numbers of ideal Fermi and Bose gases have 
been investigated for canonical and grand canonical ensembles, which are 
matched by referring to the same temperature, volume, and (mean) 
number N of particles. The case of two states has been treated in detail. For 
N =  1 the canonical ensemble does not distinguish between fermions and 
bosons and each level has its own "pseudo chemical potential," and these 
have been identified. The discrepancies between the ensembles have been 
plotted for N =  1, when they are most pronounced. As one would expect, 
they become small for large N. 
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